
Multi-Core Architecture on FPGA for Large Dictionary String Matching ∗

Qingbo Wang, Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2562
qingbow, prasanna@usc.edu

Abstract

FPGA has long been considered an attractive platform
for high performance implementations of string matching.
However, as the size of pattern dictionaries continues to
grow, such large dictionaries can be stored in external
DRAM only. The increased memory latency and limited
bandwidth pose new challenges to FPGA-based designs,
and the lack of spatial and temporal locality in data access
also leads to low utilization of memory bandwidth. In this
paper, we propose a multi-core architecture on FPGA to ad-
dress these challenges. We adopt the popular Aho-Corasick
(AC-opt) algorithm for our string matching engine. Utiliz-
ing the data access feature in this algorithm, we design a
specialized BRAM buffer for the cores to exploit a data re-
use existing in such applications. Several design optimiza-
tion techniques are utilized to realize a simple design with
high clock rate for the string matching engine. An imple-
mentation of a 2-core system with one shared BRAM buffer
on a Virtex-5 LX155 achieves up to 3.2 Gbps throughput
on a 64 MB state transition table stored in DRAM. Perfor-
mance of systems with more cores is also evaluated for this
architecture, and a throughput of over 5.5 Gbps can be ob-
tained for some application scenarios.

1 Introduction

String matching looks for all occurrences of a pattern
dictionary, in a steam of input data. It is the key operation
in search engines, and is a core function of network mon-
itoring, intrusion detection systems (IDS), virus scanners,
and spam/content filters [3, 4, 15]. For example, the open-
source IDS Snort [15] has thousands of content-based rules,
many of which require string matching against entire net-
work packets, i.e. deep packet inspection. To support heavy

∗Supported by the United States National Science Foundation under
grant No. CCR-0702784. Equipment grant from Xilinx Inc. is gratefully
acknowledged.

network traffic, high performance algorithms are required
to prevent an IDS from becoming a network bottleneck.

FPGAs have been attractive for high performance imple-
mentations of string matching due to their high I/O band-
width and computational parallelism. Application specific
optimizations for string matching algorithms have been pro-
posed for FPGA-based designs [18]. They typically use a
small dictionary, on the order of a few thousand patterns
(e.g., see [3, 4]). Thus the state transition table (STT) gen-
erated from a Deterministic Finite Automaton (DFA) repre-
sentation of the pattern dictionary, or the pattern signatures
themselves, can be stored in the on-chip memory or in the
logic of FPGAs.

However, the size of dictionaries has increased greatly.
A dictionary can have 10,000 patterns or more [14,15] now,
resulting in an STT table tens of megabytes in size. Such
large tables can be stored only in external memory and in-
cur long access latency. Since every character searched re-
quires a memory reference, this latency increase degrades
the string matching performance. The problem is worsened
by the fact that string matching presents little memory ac-
cess locality and that access to the STT is irregular.

In this paper, we propose a multi-core architecture on
FPGA for large dictionary string matching. We use the
Aho-Corasick algorithm (AC-opt) for design verification,
but the architecture can be applied to any such algorithms
that employ a DFA stored in DRAM for pattern match-
ing [16]. Our study shows, using AC-opt algorithm, that a
small number of frequently visited states exist in the process
of string matching, and the majority of memory references
during string matching go to these “hot” states. When we
allocate these states on FPGA to enable on-chip access to
them, not only can the traffic to external memory be signif-
icantly reduced, but the throughput for the string matching
engine is also improved due to fast on-chip access. Our ma-
jor contributions are:

• To the best of our knowledge, our architecture is the
first multi-core architecture on FPGA for large dic-
tionary string matching to address the challenge of

DRAM access latency. The BRAM buffer scheme in
this architecture is an application of a data usage fea-
ture in the AC-opt algorithm, where a set of states are
visited more often than the others.

• Several design optimizations are proposed to improve
the performance of this architecture, such as DFA re-
mapping, pipelined BRAM buffers, and thread virtu-
alization with shift registers for thread scheduling and
synchronization, etc. The schemes result in a simple
design and high clock rate implementation on FPGA,
and DRAM access latency can also be partially hidden.

• An implementation of two core system on a Xilinx
Virtex-5 LX155 demonstrates the high performance of
the proposed architecture. The design employs BRAM
buffers of 1K states to serve a 64K state STT. Based on
the Place & Route results, it can run at over 200 MHz
using less than 2% of logic resources on the chip. It
can achieve up to 3.2 Gbps in throughput for some
input streams. We evaluate systems with more cores
based on the implementation experience.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce related work and background on Aho-
Corasick algorithm. The feature of AC-opt algorithm is in-
troduced in Section 3, and the FPGA-based architecture for
large dictionary string matching is also presented. In Sec-
tion 4, design optimization techniques are introduced. The
implementation experience and performance evaluation are
presented in Section 5. We conclude with a summary and
discussion on future work.

2 Related Work and Background

2.1 Related Work
Many schemes for string matching on FPGA have been

proposed. In [5], a novel implementation using a Bloom fil-
ter was introduced. The hash-table lookup uses only a mod-
erate amount of logic and memory, but searches thousands
of strings for matches in one pass. Also, a change in the
rule set does not require FPGA reconfiguration. However,
the tradeoff between the false positive rate and the number
of rules stored in the memory leads to performance degra-
dation for large dictionary string matching.

A search engine using the Knuth-Morris-Pratt (KMP)
Algorithm [7] on FPGA was presented in [4]. The au-
thors adopt a systolic array architecture for multiple pattern
matching, where each unit is responsible for one pattern.
The unit architecture uses a modified KMP algorithm with
two comparators and a buffered input to guarantee that one
character can be accepted into the unit at every clock cycle.
The pattern and its pre-computed jump table are stored in
BRAMs. This design results in highly efficient area con-
sumption on FPGAs, but is limited by the available BRAM
blocks on-chip.

Chip multiprocessors (CMP) present new opportunities
for fast string matching with their unprecedented computing
power. In [19], researchers proposed new regular expres-
sion rewriting techniques to reduce memory usage on gen-
eral purpose multi-core processors, and used grouping of
regular expressions to enable processing on multiple threads
or multiple hardware cores. Scarpazza et al. studied the op-
timization of Aho-Corasick algorithm on the Cell B.E. for
both small and large pattern dictionary string matching [14].
When the patterns are in the range of a few hundred, one
Synergistic Processing Element (SPE) using local store can
obtain 5 Gbps throughput. However, when the dictionary
includes hundreds of thousands of patterns, they must be
stored in the external XDR DRAM, and the throughput can
only reach 3.15 Gbps for 2 processors with 16 SPEs.

Recently, soft processors on FPGAs have gained lots of
interest in the research community. Due to the demand for
high performance in network security, bioinformatics and
other applications [9, 12], FPGA and ASIC solutions have
become more attractive. Using soft processors on FPGA,
the engineering time can be reduced and software engi-
neers can program the high performance hardware platform.
In [13], a simplified IPv4 packet forwarding engine was im-
plemented on an FPGA using an array of MicroBlazes. The
softcore architecture exploited both spatial and temporal
parallelism to reach a comparable performance to designs
on an application-specific multi-core processor, i.e. Intel
IXP2400. These studies motivate us to explore an multi-
core architecture on FPGA to achieve high performance for
large dictionary string matching.

2.2 Aho-Corasick Algorithm

A class of algorithms using automata have become more
attractive [8] for string matching. From the classic Aho-
Corasick algorithm [1] and its many variants, we selected
the AC-opt for our design, since its theoretical performance
is independent of dictionary size and keyword length [16].

The Aho-Corasick algorithm and its variants perform
efficient string matching of dictionary patterns on an in-
put stream S. It finds instances of the pattern keywords
P = (P1, P2, ..., Pn) in S, even when keywords may over-
lap with one another. All variants of Aho-Corasick func-
tion by constructing a finite state transition table (STT) and
processing the input text character-by-character in a single
pass. Once a state transition is made based on the current
character, that character of the input text no longer needs to
be considered. The construction of the STT needs to take
place only once, and the STT can be reused as long as the
pattern dictionary does not change. Each state also con-
tains an output function. If the output function is defined
on a given state, that state is considered to be a final state,
and the output function gives the keyword or keywords that
have been found.

0

1

7

4

3

9

6

2

8

5

c
a

ta

ta

t

b

r~{a,b,c}

1 2 3 4 5 6 7 8 9
0 7 8 0 7 8 0 0 0

(a) Goto function

i
f(i)

i output(i)
3 cat,at
6 bat,at
8 at
9 car

(b) Failure function (c) Output function

Figure 1. AC-Failure Example

The most basic variant of Aho-Corasick, known as AC-
fail, requires the construction and usage of two functions in
addition to the standard output function: goto and failure.
The goto function contains the basic STT discussed above.
A state transition is made using the goto function based on
the current state and the current character of input. The fail-
ure function supplements the goto function. If no transition
can be made with the current state and input character, the
failure function is consulted so that an alternate state can
be chosen and text processing may continue. This exam-
ple illustrates usage of the AC-fail variant of Aho-Corasick.
Figure 1 shows the goto, failure and output functions for a
dictionary of the following keywords: cat, bat, at, car.

States a b c r t
0 7 4 1
1 2 4 1
2 7 4 1 3 9
4 5 4 1
5 7 4 1 6
7 7 4 1 8

3,6,8,9 7 4 1

Table 1. DFA state transition table

A more optimized version of Aho-Corasick is also pre-
sented in [1], known as AC-opt. We use this algorithm in
our study. AC-opt eliminates the failure function by com-
bining it with the goto function to obtain a next-move func-
tion. The result is a true DFA, which is capable of string
matching by making only one state transition per input char-
acter. Searching is therefore simplified and more efficient.
However, since the construction of the next-move function
requires both the goto and failure functions, it is less effi-
cient than AC-fail when processing the dictionary initially.

Table 1 illustrates an AC-opt DFA. The DFA is con-
structed from the dictionary consisting of the keywords used
before. Figure 2 shows a search on the input string “carica-
ture.”

input c a r i c a t u r e
state 0 1 2 9 0 1 2 3 0 0 0

Figure 2. A String Search Example

3 Algorithm Analysis and Multi-Core Archi-
tecture

3.1 Analysis of AC-opt

In our study, the STTs usually have more than 60K
states, which constitute the rows of a 2-dimensional array.
The number of columns is the same as the size of the alpha-
bet. Thus, a large dictionary needs 60 MB storage or more,
which can be stored on DRAM only. We believe that even
for a significantly large input stream, the states traversed
during a string matching are concentrated on a small part
of that STT only. Furthermore, the few states visited most
by that string matching engine satisfy the majority of state
transitions during the process of matching.

% States in levels 0,1 % Hits
Full-text search 0.114% 46.79%
Network monitoring 0.114% 81.46%
Intrusion detection 0.506% 89.84%
Virus scanning 0.506% 88.39%

Table 2. A few states in levels 0 and 1 are re-
sponsible for the vast majority of the hits

The four representative application scenarios in our
study are (1) a full-text search system, (2) a network con-
tent monitor, (3) a network intrusion detection system, and
(4) an anti-virus scanner. These are the same as in [14]. In
scenario (1), a text file (the King James Bible) is searched
against a dictionary containing the 20,000 most used words
in the English language. In scenario (2), network traffic is
captured at the transport control layer with “wireshark” [6]
while a user is browsing multiple popular news websites.
This capture is searched against the same English dictio-
nary as before. In scenario (3), the same network capture
is searched against a dictionary of about 10,000 randomly
generated binary patterns, whose length is uniformly dis-
tributed between 4 and 10 characters. In scenario (4), a
randomly generated binary file is searched against the ran-
domly generated dictionary.

The authors in [14] showed that the DFA states at levels
0 and 1, whose distances to the initial state are 0 and 1 re-
spectively, attract a vast majority of the hits to memory, as

listed in Table 2. We further recorded the number of hits
to each state during the search processes in the same four
scenarios, and ranked the states in descending order of vis-
its. From the results presented in Figure 3, which shows
the number of top states and the percentage of memory ac-
cesses that go to these states, we can see that more than 85%
of accesses by the string matching engine go to the top 1000
states. We define the hot states as the set of states that are
visited most during a string matching process.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Number of Hot States

P
er

ce
nt

ag
e

of
 A

cc
es

se
s

(%
)

full-text search
network content monitor
network IDS
anti-virus scanner

Figure 3. Memory Accesses to Hot States

3.2 Architecture Overview

Our proposed architecture is shown in Figure 4. There
are p cores sharing a STT through an interface to DRAM(s).
Each core, e.g. Ci in the figure, is equipped with a copy of
on-chip buffer Bi, serving an input stream Si, and giving an
output Oi when available.

B0

DRAM
(STT)

FPGA

Interface M
odule

C0

S1

Sp-1

B1

C1

Bi

Ci

Bp-1

Cp

D
R

A
M

 C
ontroller

Si

S0

O0

O1

Oi

Op-1

Figure 4. Architecture Overview

Utilizing the identified data usage feature from last sec-
tion, the buffers are employed to store the hot states on-chip
to reduce off-chip memory references, and to take advan-
tage of fast on-chip memory access. When an address to
STT arrives, the core logic makes a decision to direct it to
either off-chip DRAM or on-chip storage. If a large num-
ber of hot states are stored on-chip, the buffer can resolve

majority of references to STT, thus improving throughput
performance of string matching.

The cores are connected to external DRAM through an
on-chip interface module and the DRAM controller. The
DRAM controller can be off-chip, but is usually imple-
mented on FPGA.

3.3 On-Chip Buffer for Hot States

To populate on-chip buffers with hot states, we first run
a search against the STT using a training input trace which
exhibits statistical similarity to the incoming traffic. The
number of visits to each state of the DFA is recorded and
the list is sorted in descending order. The states represented
by the top n entries in the list are hot states. The larger the n,
the higher the hit rate to on-chip buffer by a string matching
engine. However, the selection of n is also affected by the
type of buffer device, and the available buffer size, etc.

A state corresponds to a row in the STT, with 256 next
state entries for an 8-bit represented alphabet. When we
use a 32-bit data to store a next state entry, including the
next state ID and output functions, 1 KB storage is needed
for each state. The on-chip storage can be implemented as a
fully associative cache on FPGA, such as a CAM. However,
a CAM of thousands of entries can lower the system’s clock
rate and can become a performance bottleneck. Due to its
fast access speed and large volume, Block RAM (BRAM)
is an ideal choice for implementing on-chip buffer to hold a
large number of hot states.

3.4 Structure of a Core

A single core architecture is shown in Figure 5. An input
character is received by the Address Generator, and com-
bined with the current state to generate a new address for
STT reference. The STT is organized as a 2-dimensional
matrix, with the row indices representing the state IDs, and
the column indices the 8-bit input characters. In the DRAM,
as well in the BRAM, the data are stored physically as a
one-dimensional array in row major order. Thus, the ad-
dress generation can be achieved by simply concatenating
the current state ID with the 8-bit input character. This ad-
dress is then used to determine whether this memory refer-
ence should go to on-chip buffer or off-chip DRAM.

To exploit the available DRAM bandwidth, we add mul-
tiple virtual threads to a core to take advantage of temporal
parallelism. Each of these virtual threads processes an in-
put stream, which could be a segment from a long input
stream, or an independent stream. A virtual thread is a DFA
engine traversing the STT with its input characters. The
thread manager, along with thread context storage, is added
to provide scheduling and synchronization among the vir-
tual threads.

The thread context stores the status of a virtual thread,
including core ID, virtual thread ID, the address to STT, the

Buffer (Hot States)

D
R

A
M

 Interface
M

odule

Thread
C

ontexts

Address
Generator

Thread Manager

M
ux On-Chip?

Current State

Input
Streams

Core i

New
address

Output

To DRAM

Output

Y

Figure 5. Structure of a Core

returned current state after a reference to STT is resolved,
etc. It also keeps track of whether the reference to STT is
on-chip or not. The thread manager chooses a ready thread,
and picks its input stream through the Mux, for the address
generator to process. The Output unit checks thread context
registers to output the match.

3.5 Reconfigurable Multi-Core Architec-
ture

In our architecture, a core executes on its own, even
though they may affect other’s performance through shared
global devices, such as interconnect and DRAM. The p
cores can be abstracted as p hardware threads, which add
spatial parallelism to the architecture by multiplying execu-
tion from the single cores. As a result, this massive paral-
lelism collectively exploit the DRAM bandwidth .

The multi-core architecture on FPGA can be described
by the parameters, such as the number of cores, the num-
ber of virtual threads per core, the bandwidth and latency
of external DRAM, the size, latency and access bandwidth
of the on-chip buffer, etc. Constrained by the resources of
FPGA, these parameters can be chosen to achieve high per-
formance for string matching.

4 Design Optimizations

4.1 DFA Re-mapping

The IDs of the identified hot states were initially as-
signed during the building of the DFA, and are unlikely
to be contiguous. As the state IDs are used by hardware
logic to decide which memory to reference, the disconti-
nuity of the hot state IDs complicates the hardware design.
We adopted an ID re-mapping scheme to ease this by shift-
ing the IDs of hot states to the beginning of the STT, making
them top states. The state space is divided into two domains
after the re-mapping, where a state with an ID number lower
than n, the number of the selected hot states, goes to access
on-chip buffer, and others external DRAM. Hence, the de-
sign for this decision-making becomes a comparator.

4.2 Simplified Thread Synchronization by
Input Interleaving

For thread scheduling and synchronization, there are dif-
ferent ways to design the thread manager and thread con-
text store shown in Figure 5. To reduce implementation
complexity, we used an input interleaving scheme for thread
scheduling and synchronization. In this scheme, every vir-
tual thread within a single core, identified with a thread ID
from 0 to m− 1, is assigned with an string segment, where
m is the number of virtual threads for each core. These
threads are polled in a round-robin fashion by the thread
manager, therefore the input streams are essentially inter-
leaved. Using this scheme, the thread contexts can be main-
tained by a shift register with help from the BRAM buffer
design, which is introduced in next section. However, a
drawback of this design is that a stall of execution can oc-
cur when the head thread’s reference to STT, specifically
to DRAM, has not returned, thus losing performance. Our
evaluation shows that when m is reasonably large, our de-
sign does not suffer significantly from the stalls.

When the interleaved input streams are the segments
from one input trace, it can happen that matchable pat-
terns across the boundary of two consecutive segments are
missed. To avoid this hazard, an overlap, equal to the length
of the longest pattern minus one, is preserved between the
neighboring segments when partitioning [14]. This method
slightly decreases the overall throughput, but guarantees the
correctness of the string matching engine.

4.3 Shared and Pipelined Buffer Access
Module

We utilized a shared and pipelined design for the BRAM
buffer access module. BRAMs on FPGA can be natu-
rally configured for dual-port access without loss of perfor-
mance, so two cores can share one buffer, where a set of hot
states is stored. To increase the clock frequency of buffer
access, we adopt a pipeline architecture inside this module.

As illustrated in Figure 6, the BRAMs in the buffer
module are divided into k even partitions, denoted
M0, M1, · · ·Mk−1. The selected hot states are also divided
evenly into k groups, and each group is stored on one of the
BRAM partitions. The accessing elements, denoted AE,
are separated by the pipeline registers. An AE is responsi-
ble for accessing its local BRAM and relays data from stage
to stage.

As illustrated in Figure 6, a core sends a thread’s context
with address information into the BRAM buffer module.
For a thread accessing DRAM, its thread context is sim-
ply passed through stage registers without any processing.
However, if a thread needs to access the BRAM partitions,
an AE, getting data from both the BRAM and the pipeline
register of the previous stage, must do the following:

M0

From core 1

M1 Mk-1BRAM Partitions

From core 0

To core 1

To core 0

REGiAEi

BRAMi

en

Control

From REGi-1

From BRAMi-1 To next stage

From the
other pipeline

Buffer Access Module

AE0 AEk-1

AE’0 AE’1

AE1

AE’k-1

Figure 6. BRAM Buffer Access Module

• If the arriving thread needs access to BRAM buffer,
and the STT address falls in the range of its local
buffer, send the address into the local BRAM.

• If the output of the previous BRAM partition is the
resulting current state for this thread, pass it to the next
pipeline register.

• Otherwise, the data from the previous pipeline register
is passed along to the next stage.

The “control” signal is used by the thread manager to hold
the pipeline when a stall is necessary. Note that all BRAM
partitions have output registers, and do not need pipeline
registers in between.

4.4 Interface between Cores and DRAM
Controller

Our design uses a multiplexing FIFO to interface the
cores and the DRAM controller. A simple time-slotted
round-robin scheduling is used to serve incoming requests
from each core. By “time-slotted,” the addresses coming
at a clock cycle go through the FIFO according to a pre-
determined order, e.g. the IDs of the cores, before the re-
quests from the next clock cycle. This scheme is consistent
with the virtual thread management introduced in Section
4.2. It performs because our input streams to the cores are
independent of each other, and they all have equal priorities.

We adopt a design from Le, et al. [10], and adapt it to
a 4-to-1 basic unit of synchronous FIFO with conversion.
Higher ratio FIFO can be formed using multiple basic units.
The FIFOs are implemented using registers and logic only,
to save BRAM for hot state buffer. A common implemen-
tation of a FIFO is a circular buffer, with read and write
address. The size of the queue sets the maximum number
of entries can be stored, and is bounded by m × p in our
design. This is due to the fact that a thread does not send

a new request until its last request is served, therefore the
maximum number of the active threads, i.e. the STT refer-
ences, is m× p.

5 Implementation and Evaluation

5.1 Implementation on FPGA Platforms

We implemented our architecture on a Virtex-5 XL155
for a 64K state STT with 2 cores. A STT of 64K states
needs a 16-bit representation of its state IDs. According
to the analysis in Section 3.1, the larger the buffer size, the
better the throughput can be. We target a buffer of 1K states,
which needs at least 4 Mb BRAM on FPGA. The Virtex-5
LX155 has 192 BRAM blocks of 36 Kb, i.e. 6912 Kb in
total, which is sufficient to buffer 1K states in our design.

Our implementation can run at over 200 MHz using the
design optimizations introduced in Section 4. While the
BRAM usage is at 66% of the chip, the logic resource con-
sumption for the two cores is less than 2%. We can place
dozens of cores on a mid-sized FPGA.

Our design works with a customized DRAM controller
connected by a FIFO queue that can have different clock
frequencies for write and read. The controller is based on a
DDR2 controller generated by the Memory Interface Gen-
erator (MIG) tool in Xilinx ISE design suite 10.1.

5.2 DRAM Access Module
To evaluate system performance for string matching

with large dictionary and long input trace, the behavior of
DRAM modules must be studied. DDR SDRAMs have
gained popularity, by increasing operating frequency, to
become the standard of DRAMs currently. In Table 3,
we identify some critical timing specifications for DDR
SDRAM from the published technical documentation of
DRAM vendors [11].

SDRAM DDR DDR2 DDR3
tRTP 12 7.5 10
tRC 55 55 50

tRRD 10 10 10
tRAS 40 45 37.5
tRP 15 15 15

tRCD 15 15 15
tCL 15 15 15

Clock period 5 3 2.5
Banks 4 4/8 8

Table 3. DDR SDRAM key electrical timing specifications. All
units are ns except for the banks. Clock period is when work-
ing with FPGA. tRTP: Read-to-Precharge delay. tRC: Active-
to-Active delay in the same bank. tRRD: Active-to-Active delay
between different banks. tRAS: Active-to-Precharge delay tRP:
Precharge latency. tRCD: Activate latency. tCL: Read Latency.

FPGA vendors support DDR3 with a clock rate of 400
MHz and DDR2 with 333 MHz on their development plat-
forms [2, 17]. However, when the data access is irregular
and spatial locality can not be utilized, DRAM delays and
latencies become more important than their peak data rates.
The parameters in Table 3 can be divided into two classes.
The first includes such timing requirements as tRTP , tRC,
tRRD, tRAS, etc., which specify the delays to be satisfied
between consecutive operations on DRAM. The second is
latencies, including tRP , tRCD, tCL, which are the time
needed for an operation to complete. These parameters are
used in our simulation program to estimate the performance
for our design. Note that the numbers for the parameters
may vary slightly for different DRAM modules.

5.3 Performance Evaluation

Performance of string matching is measured by through-
put in Gbps. We first study the performance of our design
implementation for a 2-core system. The two cores share
a BRAM buffer of 1K states and an external DRAM, the
Micron MT47H64M16 DDR2 SDRAM. The DRAM has a
16-bit data bus, 8 internal banks with a selected burst length
of 4. The number of pipeline stages in the BRAM buffer is
set to 8. The number of virtual threads was varied to see the
impact on performance.

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60 70

Number of Threads per Single Core

Th
ro

ug
hp

ut
 (G

bp
s)

full-text search

network content monitor

network IDS

anti-virus scanner

Figure 7. Throughput for a 2-Core System
Our simulation program set a 200 MHz clock rate for

the cores while allowing the DRAM module to runs at 333
MHz. The DRAM refresh cycles were ignored due to its
little effect on the performance. When we have 2-way 8-bit
input at 200 MHz, the maximum throughput achievable by
the design is 3.2 Gbps. The results for the four application
scenarios from Section 3.1 are shown in Figure 7. As the
number of virtual threads per core increases, the through-
put generated by the two cores also grows to about 3 Gbps.
For application scenarios such as network content moni-
tor and network IDS, the optimal throughput of 3.2 Gbps
is approached when the number of threads is large. This
means all accesses to DRAM are returned before a request-
ing thread gets its turn to run again, thus eliminating the
stalls of execution.

We then fixed the total size of BRAM buffer on chip, and
varied the number of cores to study the performance of our
architecture under memory constraints. As the number of
cores increases, the buffer size of each core decreases, and
so is the number of hot states, which reduces the hit rate to
the on-chip buffers.

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10 12 14 16 18

Number of Cores

Th
ro

ug
hp

ut
 (G

bp
s)

8
16
24
32
48
64

Number of Threads per Core

Figure 8. Performance of Multi-Core Architec-
ture for Full-Text Search

Figure 8 shows that for a full-text search, our design with
two cores can yield best performance for all cases with dif-
ferent number of threads per core. The throughput for all
designs is then decreasing even though the number of cores
keeps increasing. For the network content monitor experi-
ment, the performance peaks at about 5.5 Gbps for a four
core design, as shown in Figure 9. And then the throughput
degrades similarly as the last one.

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 2 4 6 8 10 12 14 16 18

Number of Cores

Th
ro

ug
hp

ut
 (G

bp
s 8

16
24
32
48
64

Number of Threads per Core

Figure 9. Performance of Multi-Core Architec-
ture for Network Content Monitor

As the design changes to have more cores, the hit rate
to on-chip buffer will drop, due to reduced buffer size, to
a level at which the references to DRAM deplete the avail-
able bandwidth, and no more benefits come from increasing
threads. At that time, Adding more cores only intensifies
the contention for DRAM, therefore deteriorating the over-
all performance of the design. The reason for the different
peaking points between the two experiments is that the hit
rate curves shown in Figure 3 are different for the two. the
full-text search’s hit rate to on-chip buffer is lower than the
one for the network content monitor, given the same num-
ber of hot states, so its performance should saturate earlier
than that of the network content monitor. The difference
in peak throughputs for the two experiments also shows the
performance of our proposed architecture is contingent on
input stream characteristics.

5.4 Performance Comparison
While there is no published research on FPGA with

which to compare our work, we studied large dictionary
string matching on a Dell XPS 410 with an Intel Core 2
Quad Q6600 processor for the full-text search scenario.
The Intel C/C++ 10.1 compiler applies system-specific opti-
mizations, which can allow Cycle-Per-Instruction (CPI) for
a program to reach close to 1/4. Similar to our scheme in
the FPGA design, a “training” pre-fetch is used to boost the
performance. The “training” technique conducts search on
training input statistically similar to the real input. The in-
tention is to load the cache with the most visited states. The
results for 4 cores are presented in Table 4.

Table 4. Performance of String Matching on a
Multicore System

Measured Throughput (Gbps) Best Average
5,000 patterns 5.5 3.2
5,000 patterns, Trained 10.0 5.8
50,000 patterns 3.3 2.3
50,000 patterns, Trained 4.7 3.4

Another thorough study of large dictionary string match-
ing on Cell B.E., is presented in [14]. In this study, the au-
thors found the XDR DRAM in the system performs best in
random access when an SPE performs 16 concurrent trans-
fers of 64-bit blocks, and proposed a 16 input interleav-
ing scheme for one SPE. Assisted by other optimization
techniques on memory system and local stores, the design
achieves a theoretical aggregate pattern search throughput
of 3.15 Gbps on a 2 Cell processor system with 16 SPEs.
Our proposed architecture with only 2 to 4 cores exhibits
competitive performance to these highly advanced multi-
core CMPs, without resorting to a high performance propri-
etary DRAM system as Cell B.E. does.

6 Conclusions
This paper presented a multi-core architecture on FPGA

for large dictionary string matching. By buffering “hot
states” on on-chip BRAM, the off-chip DRAM references
were significantly reduced. Using proposed optimization
techniques, our architecture can be realized with high op-
erating clock rate for designs on FPGA. The achieved
throughput performance is comparable to the solutions on
other state-of-the-art multicore systems, while consuming
only a small fraction of logic resources on FPGA. Our fu-
ture work will study the effects of deploying more DRAM
modules on the system performance, and explore the possi-
bility of adding external SRAMs to the design.

7 Acknowledgments
We are grateful to Yi-Hua E. Yang, Weirong Jiang,

Danko Krajisnik and Ju-wook Jang for helpful discussions
and comments on an early draft of the paper.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an
aid to bibliographic search. Commun. ACM, 18(6):333–340,
1975.

[2] Altera Corporation. http://www.altera.com.
[3] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, and

M. Polychronakis. Performance analysis of content match-
ing intrusion detection systems. In Proc. of the International
Symposium on Applications and the Internet, January 2004.

[4] Z. Baker and V. Prasanna. A computationally efficient engine
for flexible intrusion detection. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 13(10):1179–1189,
October 2005.

[5] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lock-
wood. Deep packet inspection using parallel bloom filters. In
Hot Interconnects, pages 44–51, August 2003.

[6] Gerald Combs. http://www.wireshark.org.
[7] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern match-

ing in strings. SIAM Journal on Computing, 6(2):323–350,
1977.

[8] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner.
Algorithms to accelerate multiple regular expressions match-
ing for deep packet inspection. In SIGCOMM ’06: Proceed-
ings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications,
pages 339–350, 2006.

[9] M. Labrecque, P. Yiannacouras, and J. G. Steffan. Scaling
soft processor systems. In Proceedings of FCCM, pages 99–
110, 2008.

[10] H. Le, W. Jiang, and V. K. Prasanna. A sram-based architec-
ture for trie-based ip lookup using fpga. Field-Programmable
Custom Computing Machines, Annual IEEE Symposium on,
0:33–42, 2008.

[11] Micron Technology, Inc. http://www.micron.com.
[12] G.-G. Mplemenos and I. Papaefstathiou. Soft multicore sys-

tem on FPGAs. In Proceedings of FCCM, pages 199–201,
2008.

[13] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An FPGA-
based soft multiprocessor system for ipv4 packet forwarding.
In Proceedings of FPL, pages 487–492. IEEE, 2005.

[14] D. P. Scarpazza, O. Villa, and F. Petrini. Exact multi-pattern
string matching on the Cell/B.E. processor. In Conf. Comput-
ing Frontiers, pages 33–42, 2008.

[15] SNORT: The Open Source Network Intrusion Prevention and
Detection System. http://www.snort.org.

[16] B. W. Watson. The performance of single-keyword and
multiple-keyword pattern matching algorithms. Technical
Report, Eindhoven University of Technology, 19(10):1179–
1189, October 1994.

[17] Xilinx Incorporated. http://www.xilinx.com.
[18] S. Yi, B.-K. Kim, J. Oh, J. Jang, G. Kesidis, and C. R. Das.

Memory-efficient content filtering hardware for high-speed
intrusion detection systems. In Proceedings of the 2007 ACM
symposium on Applied computing, pages 264–269, 2007.

[19] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz.
Fast and memory-efficient regular expression matching for
deep packet inspection. In ANCS ’06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking
and communications systems, pages 93–102, New York, NY,
USA, 2006. ACM.

